Knock Behavior of a Lean - Burn , Hydrogen - Enhanced Engine Concept

نویسنده

  • John B. Heywood
چکیده

Experiments to identify the knock trends of lean gasoline-air mixtures, and such mixtures enhanced with hydrogen (H2) and carbon monoxide (CO), were performed on a single-cylinder research engine with boosting capability. The experimental method used to investigate knock trends consisted of determining the octane number (ON) of the primary reference fuel (mixture of isooctane and n-heptane) supplied to the engine that just produced audible knock. All tests were completed at 1500 rpm, MBT spark timing, with coolant temperature at fully warmed-up conditions and intake air temperature at 200 C. Various relative air-fuel ratio (lambda) sweeps were performed, while holding different parameters constant. First, testing with primary reference fuels investigated knock limits of lean operation; selected tests were then repeated with H2 and CO-enhancement. These mixtures simulated 15% and 30% of the engine's gasoline being reformed in a plasmatron fuel reformer. Experimental results show that leaner operation does not decrease the knock tendency of an engine under conditions where a fixed output torque is maintained; rather it slightly increases the octane requirement. The onset of knock does decrease with lean operation when the intake pressure is held constant, but engine torque is then reduced. When H2 and CO are added to the mixture, the knock susceptibility is reduced, as illustrated by a decrease in the measured octane number of the primary reference fuel resulting in knock. Experiments conducted with the addition of H2 -show similar trends, but to a lesser degree. Therefore, both H2 and CO act as octane enhancers when added to a hydrocarbon-air mixture. The extent to which H2 and CO improve the knock resistance of a mixture can be estimated by finding the bond-weighted octane number for the mixture of fuels. To substantiate these results, a chemical kinetic ignition model was used to predict autoigntion of the end-gas for various conditions and fuel-air mixtures. Predicted model trends of knock onset partially agree with experimental observations. A comprehensive isooctane chemistry mechanism was used to demonstrate that H2 and CO-enhancement are effective in lengthening the ignition delay, and thereby reduce knock tendency. Thesis Advisor: John B. Heywood Title: Sun Jae Professor of Mechanical Engineering

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of Swirling and Tumbling Flow Pattern of Spark Ignition Engine

Gas motion within the cylinder is one of the major factors that control the combustion process in spark ignition engine. It also has significant impact on heat transfer. Both the bulk gas motion and the turbulence characteristics of the flow are important and governing the overall behavior of the flow. An arrangement for obtaining a stratified charge, using port injection, is proposed for a ...

متن کامل

Experimental Investigation of The Performance Response of A Spark Ignition Engine to Adding Natural Gas to Gasoline in Lean-Burn Condition

Considering the disadvantages of gasoline and natural gas as mono-fuel in SI engines has made the researchers to improve the performance and reduce the pollutant as the advantages of the application of dual fuel engines. On the other hand, lean-burn in engine may lead to the reduced pollutant. In the present study various mixtures of gasoline and natural gas with the gasoline as the dominant fu...

متن کامل

Air-Fuel Ratio Control of a Lean Burn SI Engine Using Fuzzy Self Tuning Method

Reducing the exhaust emissions of an spark ignition engine by means of engine modifications requires consideration of the effects of these modifications on the variations of crankshaft torque and the engine roughness respectively. Only if the roughness does not exceed a certain level the vehicle do not begin to surge. This paper presents a method for controlling the air-fuel ratio for a lean bu...

متن کامل

Experimental Study of Hydrogen Addition Impact on Emissions and Performance of a Natural Gas Fueled Engine

Hydrogen is seen as one of the important energy carriers of the future with potential to reduce local as well as global warming. The main by-product of the combustion of hydrogen in air is water vapor and trace quantities of oxides of nitrogen. An experiment was conducted to study the impact of hydrogen/natural gas blends on performance, thermodynamic efficiency and exhaust gas emissions in ...

متن کامل

Performance Characteristics of Lean Burn Engine Fuelled with Hydrogen Rich Gas from Plasma Fuel Reformer

In order to analyze the effect of hydrogen rich gas addition (HRG) on lean burn engine’s thermal efficiency and emission, an experimental research was conducted on a gasoline direct injection (GDI) engine using definite fraction of HRG. The results showed that HRG addition could significantly extend the lean operation limit, improve the engine’s lean burn ability, and decrease burn duration. HR...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014